\[
\begin{align*}
\begin{cases}
    \frac{x^2}{9} + \frac{y^2}{z} = 1 \\
y = mx - 5m + 1 \\
    0 \leq x \leq 3 \\
    0 \leq y \leq 1 \\
y - 1 + m(-x + 3) = 0 \\
    m = \frac{1}{2} \\
    y = 1 \\
    x = 5 \\
C(5, 1) \\
\end{cases}
\end{align*}
\]

Impongo il punto di \( B_2 \) per \((3, 0)\):

\[
y = mx - 5m + 1
\]

\[
0 = 3m - 5m + 1
\]

\[
-2m = -1 \quad \Rightarrow \quad m = \frac{1}{2}
\]

Impongo il punto di \( B_2 \) per \((0, 1)\):

\[
x = -5m + 1 \quad \Rightarrow \quad m = 0
\]

Se \( m = 0 \) ho due soluzioni coincidenti.

Se \( 0 < m \leq \frac{1}{2} \) ho una soluzione.

\[
\begin{align*}
\begin{cases}
    \frac{x^2}{9} + \frac{y^2}{9} = 1 \\
    x^2 + y = 2 \quad x \geq 0 \quad x = 0
\end{cases}
\end{align*}
\]